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Abstract The derivation of the Nordheim-Boltzmann transport equation for weakly inter-
acting quantum fluids is a longstanding problem in mathematical physics. Inspired by the
method developed to handle classical dilute gases, a conventional approach is the use of the
BBGKY hierarchy for the time-dependent reduced density matrices. In contrast, our con-
tribution is motivated by the kinetic theory of the weakly nonlinear Schrödinger equation.
The main observation is that the results obtained in the latter context carry over directly
to weakly interacting quantum fluids provided one does not insist on normal order in the
Duhamel expansion. We discuss the term by term convergence of the expansion and the
equilibrium time correlation 〈a(t)∗a(0)〉.

Keywords Boltzmann-Nordheim equation · Uehling-Uhlenbeck equation · Kinetic
theory · Weakly interacting fermions · Weakly interacting bosons · Quantum BBGKY
hierarchy · Time-dependent perturbation theory

1 Introduction

With the discovery of quantum mechanics, evidently, Boltzmann’s kinetic theory of rari-
fied gases had to be revised. The modification turned out to be minimal, in a certain sense.
Only the classical differential scattering cross section had to be replaced by its quantum
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version, which thus depends on whether the gas particles are fermions or bosons. Other-
wise the structure of the equation remains unaltered. In particular, the stationary solutions
are still the Maxwellians. In addition, a natural task was to investigate the kinetic regime
for weakly interacting quantum fluids with no particular restriction on the density. Time-
dependent perturbation theory, or even the more basic Fermi’s golden rule, provides a con-
venient tool. Since the interaction is weak, the differential cross section appears now only in
the Born approximation. The resulting quantum kinetic equation has a cubic collision opera-
tor, rather than a quadratic one as in Boltzmann’s work. As a consequence, the Maxwellians
exp[−β(ω(k) − μ)] are no longer stationary. The correct stationary solutions are of the
form (exp[β(ω(k) − μ)] ∓ 1)−1 in accordance with the statistics of the quantum fluid under
consideration.

The quantum transport equation was first written down by Nordheim [1] in a paper sub-
mitted on May 30, 1928 and published a few weeks later. His work is an ingenious guess,
supported by an H-theorem and by the physically expected stationary momentum distribu-
tions. Later on more systematic derivations followed [2]. In the kinetic literature the trans-
port equation mostly carries the names of Uehling and Uhlenbeck [3]. In their 1933 paper
they study properties of the transport equation, in particular its linearization around equilib-
rium and the long time hydrodynamic approximation.

There is a fundamental difference between weakly interacting classical and quantum flu-
ids in the kinetic regime. For two classical particles a small interaction results in a small
change of the relative momentum. Therefore the collision operator is not an integral oper-
ator, as in Boltzmann’s classic work, but it is a nonlinear differential operator, apparently
first realized in 1936 by Landau [4] in the context of plasmas and fluids with long range
interactions. On the other hand, two weakly interacting quantum particles will pass through
each other with probability 1 − O(λ2), λ the coupling constant, and will s-wave scatter with
probability O(λ2). Therefore the collision operator is still an integral operator.

In our notes we will consider only quantum fluids interacting through a weak pair poten-
tial.

The conventional formal derivation of the transport equation proceeds via Fermi’s golden
rule. Over the years there have been many attempts to improve on the argument. On the
theoretical side we mention in particular van Hove [5], Prigogine [6], and Hugenholtz [7].
With the work of Lanford [8] on the microscopic justification of the classical Boltzmann
equation and the work of Davies [9] on the weak coupling limit for a small quantum system
coupled to a large heat bath, the derivation of kinetic equations was recognized as a problem
of interest to mathematical physics. In fact, it is already stated verbally in Hilbert’s famous
collection of problems as problem No. 6 [10]. The derivation of quantum kinetic equations
still stands as a challenge. We will explain its current status in due course.

Regarding a quantum fluid as starting point, there are two in essence orthogonal ways
to proceed with a semiclassical approximation. Within the particle picture, it is natural to
take the limit of a large mass which leads to classical point particles interacting through a
pair potential. On the other side, from the point of view of operator-valued fields, the natural
limit is a weak, long range (on the scale of a typical inter-particle distance) potential which
leads to the nonlinear Schrödinger equation, also known as Hartree equation. Both limits
can be formulated as an Egorov theorem for operators [11–14]. In the former case one is
back to the model studied by Boltzmann while in the latter case the kinetic issue concerns a
weakly nonlinear wave equation as already studied by Peierls [2].

In [15] we investigate the weakly nonlinear Schrödinger equation and develop a machin-
ery for dealing with the high-dimensional oscillatory integrals as they arise in the Duhamel
expansion of the solution of that equation. The goal of this paper is to explain how these
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novel techniques can be used for the derivation of quantum kinetic equations. In fact, we
will provide mostly sketches of the argument and prove only a few crucial points. Otherwise
we would be overwhelmed by technical issues. But we do clearly indicate where, to our
understanding, there are gaps and new ideas will be required.

To give a brief outline: Weakly interacting lattice bosons and lattice fermions are intro-
duced in Sect. 2 together with the Duhamel expansion of the time evolution operator. In
Sect. 3 we explain how this expansion differs from the expansion resulting from the quan-
tum BBGKY hierarchy and in Sect. 4 we make a comparison with wave turbulence for the
weakly nonlinear Schrödinger equation. The main body of novel results are in Sects. 5 to 7
where we discuss equilibrium time correlations and spatially homogeneous nonequilibrium
states in the kinetic limit. In Appendix B we summarize a few properties of spatially homo-
geneous quantum kinetic equations.

2 Weakly Interacting Quantum Fluids, Duhamel Expansion

We consider quantum particles on the d-dimensional lattice Z
d with lattice points x ∈ Z

d .
Later on there will be conditions which require d ≥ 3. The particles “hop” indepen-
dently to nearby sites. The hopping amplitude for the relative displacement is given by
α : Z

d → R with α(x) = α(−x). α is of compact support, i.e., α(x) = 0 for |x| > R with
suitable R. The Fourier transform of α is the dispersion relation ω(k) = α̂(k). Clearly
ω(k) = ω(k)∗ = ω(−k) and ω is real analytic. This by itself will not be enough and fur-
ther conditions, originating from the analysis in [15], will be imposed. The particles interact
through the weak pair potential λV , V : Z

d → R, V (x) = V (−x). V is assumed to be of
compact support and λ > 0, λ 	 1. Particles are either bosons or fermions, which—although
somewhat unphysical—carry no spin. We introduce the corresponding annihilation/creation
operators a(x), a(x)∗, x ∈ Z

d . In the case of bosons they satisfy the commutation relations

[a(x), a(y)∗] = δxy, [a(x), a(y)] = 0, [a(x)∗, a(y)∗] = 0, (2.1)

while in the case of fermions they satisfy the anticommutation relations

{a(x), a(y)∗} = δxy, {a(x), a(y)} = 0, {a(x)∗, a(y)∗} = 0, (2.2)

x, y ∈ Z
d . Here [A,B] = AB − BA and {A,B} = AB + BA. With this notation the Hamil-

tonian of our system of particles reads

H =
∑

x,y∈Zd

α(x − y)a(x)∗a(y) + 1

2
λ

∑

x,y∈Zd

V (x − y)a(x)∗a(y)∗a(y)a(x). (2.3)

H at λ = 0 is quadratic and denoted by Hhar. Clearly the number of particles, N , is con-
served,

N =
∑

x∈Zd

a(x)∗a(x) and [H,N ] = 0. (2.4)

For f : Z
d → C we introduce its Fourier transform as

f̂ (k) =
∑

x∈Zd

f (x)e−i2πk·x, (2.5)
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with k ∈ T
d = [− 1

2 , 1
2 ]d , the d-dimensional unit torus. The physical momentum is 2πk, but

our convention has the advantage of otherwise minimizing the number of 2π prefactors. The
inverse transform to (2.5) reads

f (x) =
∫

Td

dkf̂ (k)ei2πk·x . (2.6)

Sometimes it is more convenient to have a function, say W , defined on T
d . Then its inverse

Fourier transform will be denoted by W̌ . With this notation we have in momentum space

H =
∫

Td

dkω(k)â(k)∗â(k) + 1

2
λ

∫

(Td )4
dk1dk2dk3dk4δ(k1 + k2 − k3 − k4)

× ̂V (k2 − k3)â(k1)
∗â(k2)

∗â(k3)â(k4). (2.7)

Remark 2.1 (Infinite volume limit) The Hamiltonians (2.3), resp. (2.7), define a unitary
dynamics for initial states which have a bounded number of particles. To be more precise,
we introduce the Fock space

F =
∞

⊕

n=0

Fn, Fn = �2(Z
d)⊗n (2.8)

and the projections Pθ , θ = ±. P+F is the subspace of symmetric and P−F is the subspace of
antisymmetric wave functions. Since [H,N ] = 0, PθFn is invariant and H restricted to PθFn

is a self-adjoint and bounded operator for each n. Of particular interest will be translation
invariant initial states. Then the number of particles is infinite and the expression (2.3) is only
formal. Thus one first has to restrict the fluid to a box 
 with periodic boundary conditions.
In the kinetic limit its side-length must be of order λ−2. Thus, for constant density, the
average number of particles is finite and of order λ−2d . Hence, for fixed λ the dynamics is
well defined. Conceptually one would prefer to first let 
 ↑ Z

d and then λ → 0 together with
the appropriate rescaling of space-time. This program can be carried through for fermions,
in which case the operators a(x), x ∈ Z

d , are bounded and the dynamics is defined as a
group of automorphisms on the C∗-algebra of quasi-local observables [16]. Thus one can
work directly at infinite volume. For lattice bosons the dynamics at infinite volume is not so
well understood. For our purposes the infinite volume limit is not a central issue. One can
first write down the Duhamel expansion in finite volume 
 and then establish that, for the
particular initial state and the observables of interest, the estimates are uniform in 
, hence
hold when 
 ↑ Z

d .

Remark 2.2 (Stability) We will study equilibrium time correlations in the kinetic limit. For
this the β-KMS state 〈·〉β,λ for H − μN , μ the chemical potential, has to be well-defined
and, hence, V has to be a thermodynamically stable potential. For lattice fermions no further
conditions are needed. For lattice bosons a simple sufficient condition would be

V ≥ 0. (2.9)

For a discussion of equilibrium states at small λ we refer to [17, 18]. In the kinetic limit
thermodynamic stability does seem to play a role.
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Remark 2.3 (Continuum limit) In [15] we study a classical field theory by regarding
a(x), a(x)∗ as commutative complex-valued field. To avoid ultraviolet divergence, it was
necessary to introduce a spatial discretization, as will be explained in more detail in Sect. 4.
Since we plan to transcribe the results from [15] to quantum fluids, we stick to the lattice
theory. Thus our model is appropriate, for example, for a fluid of electrons in a crystal back-
ground potential and for bosons in an optical lattice. To understand whether a continuum
limit is feasible, we recall that

〈â(k)∗â(k′)〉β,0 = δ(k − k′)W±
β (k), W±

β (k) = 1

eβ(ω(k)−μ) ∓ 1
. (2.10)

Here β is the inverse temperature, β > 0, and μ is the chemical potential chosen such that
ω(k)−μ > 0 (and suppressed in our notation). We adopt the standard convention Wθ

β , where
θ = 1 stands for bosons and θ = −1 for fermions.

In the continuum limit, i.e., for a fluid in empty space, one would replace the position
space Z

d by R
d and α∗ by −�, implying the dispersion relation ω(k) = k2. Clearly in this

case
∫

Rd

W±
β (k)dk < ∞, (2.11)

indicating that there is no ultraviolet divergence. Indeed, as discussed in [17, 18], the equi-
librium state for small λ, and with restrictions on the density, is well-defined. It would be of
considerable interest to find out whether the analysis in [15] could be extended to weakly
interacting quantum fluids in R

d .

For an arbitrary operator A we define its Heisenberg evolution by A(t) = eiHtAe−iHt ,
A(0) = A. Using d

dt
A(t) = i[H,A(t)], one obtains the evolution equation

d

dt
a(x, t) = −i

∑

y∈Zd

α(x − y)a(y, t) − iλ
∑

y∈Zd

V (x − y)a(y, t)∗a(y, t)a(x, t), (2.12)

which in momentum space becomes

d

dt
â(k1, t) = −iω(k1)â(k1, t) − iλ

∫

(Td )3
dk2dk3dk4δ(k1 + k2 − k3 − k4)

× ̂V (k2 − k3)â(k2, t)
∗â(k3, t)â(k4, t). (2.13)

Equations (2.12) and (2.13) will be solved as a Cauchy problem given the initial, time
t = 0, state. In general one should allow for spatial variation on the scale λ−2. To keep
matters simple we will restrict ourselves to a spatially homogeneous situation. Thus the
initial state 〈·〉 is assumed to be translation invariant with good clustering properties. In
particular

〈â(k)∗â(k′)〉 = δ(k − k′)W(k) (2.14)

for some smooth W . In addition, 〈·〉 has to be gauge invariant, i.e.,

〈eiϑNAe−iϑN 〉 = 〈A〉 (2.15)

for ϑ ∈ [0,2π]. One quantity of interest will be the two-point function at time t . Since the
dynamics preserves translation and gauge invariance, it must necessarily be of the form

〈â(k, t)∗â(k′, t)〉 = δ(k − k′)Wλ(k, t), (2.16)
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Wλ ≥ 0, Wλ(k,0) = W(k), together with 〈â(k, t)〉 = 0, 〈â(k, t)â(k′, t)〉 = 0.
Kinetic theory studies Wλ(k, t/λ2) for small λ. A special role will be played by quasifree

states, which we define first.

Definition 2.4 (Quasifree state) Let ρ1 be a self-adjoint operator on �2(Z
d) with integral

kernel ρ1(x, y). For bosons we impose ρ1 ≥ 0 while for fermions 0 ≤ ρ1 ≤ 1. A gauge in-
variant state 〈·〉 is called quasifree with correlator ρ1, if for all xi, yj ∈ Z

d , i = 1, . . . ,m, j =
1, . . . , n, it holds

〈(

m
∏

i=1

a(xi)

)∗( n
∏

j=1

a(yj )

)〉

= δmn det θ

(

ρ1(xi, yj )
)

i,j=1,...,n
. (2.17)

Here the operators are ordered from left to right as they appear in the
∏

symbol and the
empty product is interpreted as 1. det− is the usual determinant, while det+ is the permanent.
Translation invariance is reflected by ρ1(x, y) depending only on x − y, resp. in momentum
space by (2.14).

Kinetic theory puts forward a rather simple picture of the dynamics for small λ: On the
microscopic time scale the initial W(k) does not change while the unperturbed dynamics
forces the state to become quasifree. To say, after a time t which is short on the kinetic scale
and long on the microscopic scale, for arbitrary n ∈ N, the higher moments are approxi-
mately of the form, W̌ denoting the inverse Fourier transform,

〈(

n
∏

i=1

a(xi, t)

)∗( n
∏

j=1

a(yj , t)

)〉

� detθ
(

W̌ (xi − yj )
)

i,j=1,...,n
(2.18)

with all other moments vanishing. On the kinetic time scale, t = O(λ−2), Wλ(k, t) changes
while preserving the quasifree property. Of course, only in the limit λ → 0 we obtain such
a strict separation of the two space-time scales. The initial time slip with the dynamics
generated by Hhar was studied by Ho and Landau [19]. Under suitable assumptions on ω,
they prove quasifreeness in the limit t → ∞ provided the initial state is �1-clustering.

We are mostly interested in the kinetic time scale and thus impose the state 〈·〉 to be
quasifree to begin with. As argued in [20], see also [21], if one assumes, up to small errors,
the state still to be quasifree at the long time t = λ−2τ , τ = O(1), then it is not too difficult
to determine the (approximate) evolution equation for Wλ(k, t).

To study 〈â(k, t)∗â(k′, t)〉 the only method currently available is to expand the expecta-
tion value of interest with respect to λ, which is achieved through the Duhamel expansion.
It will be convenient to work in the interaction representation and we introduce

â(k,1, t) = eiω(k)t â(k, t), â(k,−1, t) = e−iω(k)t â(−k, t)∗. (2.19)

Then (2.13) becomes

d

dt
â(k1, σ, t) = −iλσ

∫

(Td )3
dk2dk3dk4δ(k1 − k2 − k3 − k4)

× 1

2

(

(1 + σ)̂V (k2 + k3) + (1 − σ)̂V (k3 + k4)
)

× exp
[−it

(−σω(k1) − ω(k2) + σω(k3) + ω(k4)
)]

× â(k2,−1, t)â(k3, σ, t)â(k4,1, t). (2.20)
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Fig. 1 A Feynman diagram with
n0 = 2, n = 3. Up (down) arrows
correspond to parity +1 (−1).
The operator ordering at t = 0 is
a∗a∗aa∗aa∗aa. The interaction
history is (1, 4, 1)

For a product it holds that

d

dt

n
∏

j=1

â(kj , σj , t) =
n

∑

m=1

(

m−1
∏

j=1

â(kj , σj , t)

)

d

dt
â(km,σm, t)

(

n
∏

j=m+1

â(kj , σj , t)

)

, (2.21)

which, using (2.20), integrates in time to

n
∏

j=1

â(kj , σj , t)

=
n

∏

j=1

â(kj , σj ) − iλ
n

∑

m=1

σm

∫ t

0
ds

∫

(Td )3
dk′

2dk′
3dk′

4

× δ(km − k′
2 − k′

3 − k′
4)

1

2

(

(1 + σm)̂V (k′
2 + k′

3) + (1 − σm)̂V (k′
3 + k′

4)
)

× exp
[ − is(−σmω(km) − ω(k′

2) + σmω(k′
3) + ω(k′

4))
]

×
(

m−1
∏

j=1

â(kj , σj , s)

)

â(k′
2,−1, s)â(k′

3, σm, s)â(k′
4,1, s)

(

n
∏

j=m+1

â(kj , σj , s)

)

.(2.22)

Here the products are ordered from left to right with increasing label j .
Iteration of (2.22) yields the Duhamel expansion for products of the form

n0
∏

j=1

â(kj , σj , t), t > 0. (2.23)

The expansion is most concisely organized through Feynman diagrams, compare with Fig. 1.
We explain a generic term.

We denote the final time by t , t > 0. The initial time is 0. There will be n “collisions” or
interactions, n ≥ 0, which in the Feynman diagram are represented as fusions. We subdivide
[0, t] into n + 1 time slices with index i ∈ I0,n = {0, . . . , n}. Omitting the zero we set In =
{1, . . . , n}. The i-th slice has length si . Thus

∑n

i=0 si = t and the slices are [0, s0], . . . , [s0 +
· · ·+sn−1, t]. To describe the fusions we start in slice 0 with n0 +2n line segments, see Fig. 1
for the orientation of the time axis. At time t = s0 exactly one triplet of neighboring line
segments fuses into a single line segment, while all remaining line segments are continued
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vertically. Thus in time slice 1 one has exactly n0 +2n−2 line segments. At time t = s0 + s1

exactly one triplet of neighboring line segments fuses into a single line segment, etc. The
last fusion is at t = s0 + · · · + sn−1 and in slice n one has n0 line segments. Sometimes
it is convenient to read the Feynman diagram backwards in time. The only change is that
“fusion” is turned into “branching”. We now label the line segments by momenta ki,j ∈ T

d

and by parities σi,j ∈ {−1,1}. The first index is the label of the slice. In the i-th slice we
label the momenta and parities from left to right by j = 1, . . . ,mi with mi = n0 + 2n −
2i. The corresponding index set is denoted by In;n0 = {(i, j)|0 ≤ i ≤ n, 1 ≤ j ≤ mi}. An
interaction history is denoted by � = (�1, . . . , �n), where �i refers to the index of the fused
line segment in slice i, which is also the index of the leftmost line segment in the fusing
triplet in slice i − 1. The set of all interaction histories is denoted by Gn. Clearly G0 = ∅
and Gn = Im1 × · · · × Imn .

With these preparations the n-th term of the expansion reads

Fn(t, kn,1, . . . , kn,n0 , σn,1, . . . , σn,n0)[â]

= (−iλ)n
∑

�∈Gn

∑

σ∈{−1,1}In;n0

∫

(Td )
In;n0

dk�n,�(k, σ )

×
n

∏

i=1

{

1

2
(1 + σi,�i

)V̂ (ki−1,�i
+ ki−1,�i+1) + 1

2
(1 − σi,�i

)V̂ (ki−1,�i+1 + ki−1,�i+2)

}

×
n0+2n
∏

j=1

â(k0,j , σ0,j )

∫

(R+)
I0,n

dsδ

(

t −
n

∑

i=0

si

)

n
∏

i=1

exp[−iti (s)�i−1;�i
(k, σi,�i

)] (2.24)

as a polynomial of order n0 + 2n in the initial fields. Here we have introduced the following
shorthands,

ti (s) =
i−1
∑

j=0

sj , i = 1, . . . , n, (2.25)

and

�i;j (k, σ ) = −σω(ki,j + ki,j+1 + ki,j+2) − ω(ki,j ) + σω(ki,j+1) + ω(ki,j+2). (2.26)

�n,� contains the δ-functions restricting the integral over k and the sum over σ to the graph
defined by the interaction history �. As can be seen from (2.22), for non-fusing line segments
the momentum and the parity are transported unchanged, while the triplet of neighboring
line segments with parities −,+,+ fuses into a line segment with parity + and the triplet
of neighboring line segments with parities −,−,+ fuses into a line segment with parity −.
In other words, the middle line conserves parity, while the left neighbor carries parity −
and the right neighbor parity +. Thus, if the parities in slice n are given, then they are
already determined for the remaining diagram. At a fusion the total momentum is conserved
(Kirchhoff’s rule). Explicitly,

�n,�(k, σ ) =
n

∏

i=1

{

�i−1
∏

j=1

[

δ(ki,j − ki−1,j )1(σi,j = σi−1,j )
]

× δ

(

ki,�i
−

2
∑

j ′=0

ki−1,�i+j ′

)

1(σi−1,�i
= −1)1(σi−1,�i+1 = σi,�i

)1(σi−1,�i+2 = 1)
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×
mi
∏

j=�i+1

[

δ(ki,j − ki−1,j+2)1(σi,j = σi−1,j+2)
]

}

, (2.27)

with 1 the symbol for the indicator function.
The Duhamel expansion of the product (2.23) cut at order N is given by

n0
∏

j=1

â(kj , σj , t) =
N−1
∑

n=0

Fn(t, k1, . . . , kn0 , σ1, . . . , σn0)[â]

+
∫ t

0
dsFN(t − s, k1, . . . , kn0 , σ1, . . . , σn0)

[

â(s)
]

. (2.28)

As before, in (2.28) â denotes the time 0 field, while â(s) is the time s field as it appears
in (2.22). To complete the Feynman diagrams the expansion in (2.28) has still to be averaged
over some initial state. Note (i) the error term still contains the full time evolution and (ii) the
operator order for the product appearing in Fn depends on the particular interaction history.

Given an initial quasifree state of the form (2.17) with bounded W , one can estimate
roughly the magnitude of a Feynman diagram with respect to this initial state. As an exam-
ple, let us consider 〈â(k, t)∗â(k′, t)〉 for which n0 = 2. At order n of the expansion, from
the momentum and time integrations one obtains the bound λntncn/n! with a suitable con-
stant c. The initial state has n! terms of the same size. Thus a Feynman diagram is bounded
by λntncn. However the number of collision histories is also n!, thus yielding a zero radius
of convergence for the infinite series.

One possibility to improve the situation would be to extract some extra decay in time.
A point in case is a Fermi fluid where particles interact only if they are inside a prescribed
bounded region. Outside this region they do not interact which generates a controllable
decay. As proved in [22, 23] the Duhamel expansion converges in operator norm provided
the coupling strength satisfies |λ| < λ0 with small λ0.

For the kinetic limit no such improved time decay seems to be available and one is left
with the following tentative program.

(1) One studies the convergence of each Feynman diagram for rescaled time λ−2t , t > 0, in
the limit λ → 0.

(2) Following the pioneering work of Erdős and Yau [24] in case of the linear Schrödinger
equation with a weak random potential, one cuts the series at some λ-dependent N , the
generic choice being λN ! = 1, or perhaps λκN ! = 1 with a suitable choice of κ > 0, and
tries to control the error term by some other means. In combination with (1) this would
allow one to determine the two-point function

〈â(k, λ−2t)∗â(k′, λ−2t)〉 as λ → 0. (2.29)

We will argue that step 1 can be carried out under specified conditions on the dispersion
relation ω. For step 2, at present our only additional support is stationarity. This means that
we take as initial state, 〈·〉, the KMS state for H with a suitable choice of the chemical
potential. Of course, (2.29) is then time-independent. Quantities of interest would be two-
time correlations in equilibrium as 〈â(k, λ−2t)∗â(k′)〉 and, considerably more difficult to
handle, the number density time correlation 〈â(k, λ−2t)∗â(k, λ−2t)â(k′)∗â(k′)〉.
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3 The Quantum BBGKY Hierarchy

We return to position space. The n-th reduced density matrix, at time t is given by the
expectation

ρn(x1, y1, . . . , xn, yn, t) =
〈(

n
∏

i=1

a(yi, t)
∗
)(

1
∏

j=n

a(xj , t)

)〉

. (3.1)

Here ρn(t) should be regarded as the kernel of a positive operator acting on �2(Z
d)⊗n via

summation over y.
For both, fermions and bosons, ρn(t) is symmetric in the arguments (xj , yj ), j =

1, . . . , n. In addition, for fermions ρn(t) is separately antisymmetric in the arguments
(x1, . . . , xn) and (y1, . . . , yn), while it is symmetric for bosons. To differentiate ρn(t) in
time we use (2.12). The resulting operator ordering is no longer normal, in general, and one
has to normal order so as to get a closed evolution equation for the ρn(t)’s. Let us define, as
operators on �2(Z

d)⊗n,

H(n) = H
(n)

0 + λV (n), (3.2)

with

H
(n)

0 ψn(x1, . . . , xn) =
n

∑

j=1

∑

w∈Zd

α(xj − w)ψn(x1, . . . ,w, . . . , xn) (3.3)

and

V (n)ψn(x1, . . . , xn) = 1

2

n
∑

i �=j=1

V (xi − xj )ψn(x1, . . . , xn). (3.4)

We also define

(Cn,n+1ρn+1)(x1, . . . , yn) = −i
n

∑

j=1

∑

w∈Zd

(

V (xj − w) − V (yj − w)
)

ρn+1(x1, . . . , yn,w,w).

(3.5)
Then the reduced density matrices satisfy

d

dt
ρn(t) = −i[H(n), ρn(t)] + λCn,n+1ρn+1(t), (3.6)

which is the quantum BBGKY hierarchy.
On purely mathematical grounds, the unitary evolution extends naturally to the full Fock

space F. A state on F is given through some positive density matrix S with trFS = 1. We
require gauge invariance as [S, eiϑN ] = 0 for all ϑ ∈ [0,2π] with N the number operator
on F. Thus, denoting by Pn the projection onto the n-particle subspace Fn, it holds

PmSPn = δmnSn. (3.7)

Sn is a positive operator on Fn and trFnSn ≤ 1. Since particles are taken to be indistinguish-
able, we require Sn to be permutation invariant as an operator on Fn. Let us denote by tr[m,n],
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m ≤ n, the partial trace on Fn over the tensor product factors with labels m to n, in particular
tr[1,n] = trFn . In this general context the n-th reduced density matrix is defined through

ρn =
∞

∑

m=0

(n + m)!
m! tr[n+1,n+m]Sn+m (3.8)

as a positive operator on Fn, with the convention tr[n+1,n]Sn = Sn. The normalization is such
that

tr[1,n]ρn = trF[SN(N − 1) . . . (N − n + 1)], (3.9)

which is assumed to be bounded by cn. Then (3.8) can be inverted as

Sn =
∞

∑

m=0

(−1)m

n!m! tr[n+1,n+m]ρn+m. (3.10)

If trF[PθS] = 1, θ = ±1, then, using the realization of a(x), a(x)∗ on Fock space, it is easy
to check that (3.8) agrees with the definition (3.1).

The density matrix S evolves in time through

PmS(t)Pn = δmne−iH(n)tSneiH(n)t . (3.11)

We insert in the definition (3.8) and differentiate with respect to t . The permutation symme-
try of the state is preserved in time. This leads to

d

dt
ρn(t) = −i[H(n), ρn(t)] − iλ

n
∑

j=1

tr[n+1,n+1]
([Vj,n+1, ρn+1(t)]

)

, (3.12)

where Vj,n+1 is multiplication by V (xj − xn+1) as an operator on Fn+1. Clearly, (3.12) is
identical to (3.6).

The time-integrated version of (3.6) reads

ρn(t) = e−iH(n)tρneiH(n)t + λ

∫ t

0
dse−iH(n)(t−s)Cn,n+1ρn+1(s)e

iH(n)(t−s). (3.13)

Of interest is ρ1(t). Its perturbation series is generated by iterating (3.13). This will not be
an expansion in λ, since H(n) depends itself on λ. Expanding exp[−it (H (n)

0 + λV (n))] with
respect to λ and inserting in (3.13) yields a perturbation expansion in λ. For bosons and
fermions it has to be in one-to-one correspondence with the Feynman diagrams of Sect. 2.
By construction, for the BBGKY hierarchy the expectation with respect to the initial state is
over a normal ordered product of operators, while for Feynman diagrams normal order does
not hold, in general, compare with (2.24). On the other hand, reading Feynman diagrams
backwards in time, single line segments can branch only into three line segments, while the
perturbation expansion of the BBGKY hierarchy in the form (3.13) consists of n particles
interacting amongst themselves and one extra particle added through the “collision” Cn,n+1,
which results in a mixture of branching and no branching, see [25] for an illustration.

The BBGKY hierarchy is used by Benedetto et al. [25–27] in their study of the kinetic
limit. One observes that for the free evolution generated by H

(n)

0 the kinetic limit, space
∼ λ−2, time ∼ λ−2, is equivalent to the semiclassical limit. This can be exploited by trans-
forming ρn in each of its variables (xj , yj ) to a Wigner function. Thereby the BBGKY
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hierarchy turns into a hierarchy of multi-point Wigner functions. The free part corresponds
to classical particles with kinetic energy ω(k) and the difficulty resides in handling the non-
local “collisions”. Benedetto et al. work in the continuum, R

3 instead of Z
3, and use the

quadratic dispersion law ω(k) = k2. The initial reduced density matrices are assumed to be
of the factorized form

ρn(x1, y1, . . . , xn, yn) =
n

∏

j=1

ρ1(xj , yj ), (3.14)

at least asymptotically for small λ. Equation (3.14) does not have the antisymmetry required
for fermions. For bosons the equality ρ2 = ρ1 ⊗ρ1 forces ρ1 to be a pure state as can be seen
from

Remark 3.1 (Factorization) Using the spectral representation of ρ1 with eigenfunctions φj

and eigenvalues λj ≥ 0, symmetry in x1, x2 implies

∞
∑

i,j=1

λiλjφi(x1)φi(y1)
∗φj (x2)φj (y2)

∗ =
∞

∑

i,j=1

λiλjφj (x1)φi(y1)
∗φi(x2)φj (y2)

∗. (3.15)

λα(1 − λα) = 0 results from multiplying both sides with φα(x2)
∗φα(y2), integrating over

dx2dy2, and taking the trace in the 1-variable.

ρ1 defines the scaled Wigner function through

Wλ(r, v, t) =
∫

dηeiη·vρ1

(

λ−2r + 1

2
η,λ−2r − 1

2
η, t

)

. (3.16)

It is assumed that, for t = 0,

lim
λ→0

Wλ(r, v) = W0(r, v) (3.17)

with W0(r, v) sufficiently smooth and of rapid decay in both arguments. Benedetto et al.
prove that the perturbation series for Wλ(r, v,λ−2t) converges to a limit term by term. We
describe their limit in Sect. 5. The convergence imposed in (3.17) cannot hold for a sequence
of Wigner functions coming from a pure state. The factorization (3.14) is satisfied only for
states which have some support in (1 − P+ − P−)F and thus rules out bosons and fermions.
Equation (3.14) is a property characteristic for quantum particles with Boltzmann statistics.

For bosons and fermions one can switch freely between the BBGKY hierarchy and the
Duhamel expansion of Sect. 2. Once we assume the factorization (3.14), the BBGKY hi-
erarchy refers to a larger class of states, not restricted to (P+ + P−)F, and the mapping to
the Duhamel expansion of Sect. 2 is lost. Thus in the work of Benedetto et al. some of their
oscillatory integrals reappear in the Feynman diagrams of the Duhamel expansion. But there
are still other diagrams. Conversely Benedetto et al. have to investigate oscillatory integrals
which do not correspond to any of the Feynman diagrams studied here.
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4 A Comparison with the Weakly Nonlinear Schrödinger Equation

For the Hamiltonian (2.3) we regard a(x) as a complex-valued commutative field and, to
distinguish, denote it by ψ : Z

d → C. The classical Hamiltonian functional reads

H =
∑

x,y∈Zd

α(x − y)ψ(x)∗ψ(y) + 1

2
λ

∑

x,y∈Zd

V (x − y)|ψ(x)|2|ψ(y)|2. (4.1)

We set

ψ(x) = 1√
2
(qx + ipx) (4.2)

and regard qx,px as canonically conjugate variables. Then the field ψ evolves in time as

d

dt
ψ(x, t) = −i

∑

y∈Zd

α(x − y)ψ(y, t) − iλ
∑

y∈Zd

V (x − y)|ψ(y, t)|2ψ(x, t), (4.3)

which has the same form as (2.12). In particular, using the interaction representation as
in (2.19), the Duhamel expansion for products of the form

∏n0
j=1 ψ̂(kj , σj , t) is identical to

(2.28) derived for the quantum evolution. The only difference resides in the average over the
initial state. For the quantum case one has

〈

n0+2n
∏

j=1

â(kj , σj )

〉

(4.4)

with an operator ordering inherited from the Feynman diagram under consideration, while
in the classical case one has to substitute (4.4) by

〈

n0+2n
∏

j=1

ψ̂(kj , σj )

〉

, (4.5)

where 〈·〉 denotes the average over a suitable initial probability measure on the ψ -field.
Since the ψ -field is commutative, the ordering is irrelevant.

Let us pursue this difference in more detail. For a quasifree state it holds, compare with
Definition 2.1 and Appendix A,

〈

2n
∏

j=1

â(kj , σj )

〉

=
∑

π∈P(2n)

ε(π)

n
∏

j=1

〈â(kπ(j), σπ(j))â(kπ(n+j), σπ(n+j))〉. (4.6)

Here P(2n) is the set of all pairings of 2n elements with labeling such that, in each factor of
the product, the operator order is the same as on the left hand side and ε(π) = 1 for bosons,
ε(π) = ±1 for fermions depending on whether the permutation induced by the pairing is
even or odd. Since 〈a∗a∗〉 = 0 = 〈aa〉, the average vanishes whenever

∑2n

j=1 σj �= 0. The
classical analogue of a quasifree state is a Gaussian measure for which the only nonvanishing
moments are of the form

〈

n
∏

j=1

ψ̂(kj )
∗ψ̂(kn+j )

〉

=
∑

π∈P(n)

n
∏

j=1

〈ψ̂(kj )
∗ψ̂(kn+π(j))〉 (4.7)
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with P(n) denoting the set of all permutations of n elements. Note that (4.7) agrees with the
bosonic version of (4.6) except for operator ordering.

For bosons it holds

〈â(k)∗â(k′)〉 = δ(k − k′)W(k), 〈â(k′)â(k)∗〉 = δ(k − k′)(1 + W(k)) (4.8)

and for fermions

〈â(k)∗â(k′)〉 = δ(k − k′)W(k), 〈â(k′)â(k)∗〉 = δ(k − k′)(1 − W(k)). (4.9)

If W is smooth, then so is 1 + θW(k), and for a subleading Feynman diagram the particular
operator order makes no difference. On the other hand for a leading diagram one has to
keep track of the order and the limit will differ classically and quantum mechanically, as
it should be. In fact, the collision operator of the Boltzmann equation is purely cubic for
the commutative field while it picks up an additional quadratic piece quantum mechanically
with a relative sign which depends on the statistics of the particles.

Remark 4.1 (Rayleigh-Jeans catastrophe) If one replaces Z
d by R

d and �∗ by −�, then
(4.3) turns into the Hartree equation

i
∂

∂t
ψ(x, t) = −�ψ(x, t) + λ

∫

Rd

dyV (x − y)|ψ(y, t)|2ψ(x, t), (4.10)

and for a δ-potential into the dispersive nonlinear Schrödinger equation (also called Gross-
Pitaevskii equation)

i
∂

∂t
ψ(x, t) = −�ψ(x, t) + λ|ψ(x, t)|2ψ(x, t). (4.11)

At λ = 0 the corresponding equilibrium measure is Gaussian, gauge-invariant, and has the
covariance

〈ψ̂(k)∗ψ̂(k′)〉 = δ(k − k′)
(

β(k2 − μ)
)−1

, μ < 0. (4.12)

For dimension d = 3, the covariance (4.12) is ultraviolet divergent. This is the analogue of
the classical Rayleigh-Jeans catastrophe for the Maxwell field, in which case the covariance
is δ(k − k′)|k|−1.

5 The Spatially Homogeneous Boltzmann-Nordheim Equation

We consider an initial state which is quasifree, gauge and translation invariant, and thus
completely characterized by its two-point function

〈â(k)∗â(k′)〉 = δ(k − k′)W(k). (5.1)

By construction W ≥ 0 and for fermions W ≤ 1 in addition. The dynamics preserves gauge
and translation invariance. Therefore

〈â(k, t)∗â(k′, t)〉 = δ(k − k′)Wλ(k, t). (5.2)

As argued above, one expects that, for small λ, Wλ(k, t) will in approximation be governed
by a nonlinear transport equation.
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Conjecture 5.1 Under suitable assumptions on ω and on the covariance W in (5.1), it holds

lim
λ→0

Wλ(k,λ−2t) = W(k, t), (5.3)

W(k,0) = W(k), and with this initial condition W(t) satisfies the Boltzmann-Nordheim
equation

∂

∂t
W(k, t) = C

(

W(t)
)

(k). (5.4)

Here the collision operator is given by

C(W)(k1) = π

∫

(Td )3
dk2dk3dk4δ(k1 + k2 − k3 − k4)δ(ω1 + ω2 − ω3 − ω4)

× |̂V (k2 − k3) + θ ̂V (k2 − k4)|2(W̃1W̃2W3W4 − W1W2W̃3W̃4). (5.5)

Since the expressions tend to become lengthy we use, here and in what follows, the
standard shorthand ωj = ω(kj ), Wj = W(kj ), j = 1,2,3,4.

Remark 5.2 (Further collision operators) Inserting the definition W̃ = 1 + θW , the
Boltzmann-Nordheim collision operator becomes

C(W)(k1) = π

∫

(Td )3
dk2dk3dk4δ(k1 + k2 − k3 − k4)δ(ω1 + ω2 − ω3 − ω4)

× |̂V (k2 − k3) + θ ̂V (k2 − k4)|2
(

θ(W2W3W4 + W1W3W4

− W1W2W4 − W1W2W3) + W3W4 − W1W2

)

. (5.6)

In case of the nonlinear Schrödinger equation, â(k) is replaced by the commutative field
ψ̂(k). Then 〈·〉 is a translation and gauge invariant Gaussian measure and W(k) in (5.1)
defines its covariance. In this case the collision operator reads

CNLS(W)(k1) = π

∫

(Td )3
dk2dk3dk4δ(k1 + k2 − k3 − k4)δ(ω1 + ω2 − ω3 − ω4)

× |̂V (k2 − k3) + ̂V (k2 − k4)|2(W2W3W4 + W1W3W4

− W1W2W4 − W1W2W3) (5.7)

and thus differs from (5.4) with θ = 1 only through the quadratic terms.
If one imposes the initial condition (3.14) corresponding to quantum particles with Boltz-

mann statistics, then the collision operator becomes

CCL(W)(k1) = 2π

∫

(Td )3
dk2dk3dk4δ(k1 + k2 − k3 − k4)δ(ω1 + ω2 − ω3 − ω4)

× |̂V (k2 − k3)|2(W3W4 − W1W2). (5.8)

In their set-up Benedetto et al. prove (5.8) in the sense that the perturbation series generated
by the BBGKY hierarchy (3.6) converges term by term to the perturbation series generated
by (5.4) with collision operator CCL. Since they do not renormalize the dispersion as in (6.11)
below, they have to impose that ̂V (0) = 0. One recognizes (5.8) as the classical Boltzmann
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equation with the Born approximation to the differential cross section. Thus on the kinetic
level quantum particles with Boltzmann statistics behave like classical point particles.

Note that for bosons, θ = 1, acording to (5.6) it holds

C = CNLS + C̃CL, (5.9)

to say, adding the collision operators for classical waves and classical particles yields the
quantum mechanical collision operator. It is surprising that quantizing either the nonlinear
Schrödinger equation or classical point particles results in such a small modification on the
level of the kinetic equation.

Remark 5.3 (Spatially inhomogeneous Boltzmann equation) If one adds in (5.4), (5.5) the
spatial variation, then the Boltzmann-Nordheim equation becomes

∂

∂t
W(r, k, t) + 1

2π
∇kω(k) · ∇rW(r, k, t) = C

(

W(r, ·, t))(k), (5.10)

where our notation is supposed to indicate that C acts on the argument k at fixed r, t . Of
course, the same holds for C replaced by CNLS or CCL. Equation (5.10) can be interpreted as
coming from the motion of classical particles with kinetic energy ω(k). Collisions between
particles are implicitly defined through the conservation of energy and momentum,

ω1 + ω2 = ω3 + ω4, k1 + k2 = k3 + k4. (5.11)

The collision rule thus depends on the particular form of ω and can be very counterintuitive
when viewed from the perspective of potential scattering of mechanical particles. In the case
of the special dispersion relation ω(k) = k2/2 on R

3, energy and momentum conservation
can be parameterized in the form

k3 = k1 − ω̂ · (k1 − k2)ω̂, k4 = k2 + ω̂ · (k1 − k2)ω̂, (5.12)

with |ω̂| = 1, i.e., ω̂ ∈ S2. Then the collision operator acquires the more conventional form

C(W)(k1) =
∫

R3
dk2

∫

S2
dω̂|ω̂ · (k1 − k2)||̂V (ω̂ · (k1 − k2)ω̂)

+ θ ̂V (k1 − k2 − ω̂ · (k1 − k2)ω̂)|2(W̃1W̃2W3W4 − W1W2W̃3W̃4
)

. (5.13)

For a rotational symmetric potential, ̂V (k) = ̂Vr(|k|), the collision cross section simplifies to

|ω̂ · (k1 − k2)|
∣

∣̂Vr(|ω̂ · (k1 − k2)|) + θ ̂Vr

(

((k1 − k2)
2 − (ω̂ · (k1 − k2))

2)1/2
)∣

∣

2
. (5.14)

One notes that for a smooth potential the decay is exponential and even for hard spheres the
decay is proportional to |k1 − k2|−3. Thus at high energies there is only little scattering.

Remark 5.4 (History) Equations (5.4), (5.5) were first written down by Nordheim [1], where
he had in mind the true quantum mechanical scattering cross section, rather than only its
Born approximation. In 1929 Peierls [2] studied lattice vibrations with small nonlinearity
both classically and quantized. For this particular weakly nonlinear wave equation he de-
rives (5.4) with the analogue of the collision term (5.7). Later on it was realized that Peierls’
ideas apply to a more general class of weakly nonlinear wave equations, e.g. see [28]. For
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quantized lattice vibrations Peierls uses Fermi’s golden rule and arrives at (5.4) with the ana-
logue of the collision operator (5.5) for θ = 1. The terminology is not uniform. In kinetic
theory the name Uehling-Uhlenbeck seems to be most frequent because they studied the
equation in their pioneering work [3]. For phonon transport Peierls or Boltzmann-Peierls is
used. For dilute Bose gases Boltzmann-Nordheim seems to be rather established. We follow
this latter convention for reasons of priority.

To approach the Conjecture one expands 〈â(k, t)∗â(k′, t)〉 in the Duhamel series (2.28)
up to some N depending suitably on λ. Currently there seems to be no good idea of how to
control the error term. This leaves one with the program of the term by term convergence,
which to some extent will be explained in Sect. 6. An important improvement as regards to
Sect. 2 is to renormalize the bare dispersion ω to

ωλ(k1, t) = ω(k1) + λ

∫

Td

dk2Wλ(k2, t)
(

̂V (0) + θ ̂V (k1 − k2)
)

. (5.15)

In contrast to Sect. 6, in the present context ωλ is time-dependent through the itself unknown
Wλ(t).

By mass conservation
∫

Td

dk1W(k1, t) =
∫

Td

dk1W(k1,0). (5.16)

Thus the term proportional to ̂V (0) is in fact constant. For the second term one has the trivial
estimate

∣

∣

∣λ

∫

Td

dk2Wλ(k2, t)θ ̂V (k1 − k2)

∣

∣

∣ ≤ λ

∫

Td

dk1W(k1,0)
∑

x∈Zd

|V (x)|. (5.17)

These observations leave us with two choices: Firstly, if ̂V (k) = ̂V (0), then the spinless
fermions become noninteracting and only the case of lattice bosons interacting through a
quartic on-site potential remains of interest. ω is renormalized by a constant proportional to
λ which is easily taken care of. Secondly, if ̂V (k) depends on k, the situation is more com-
plicated. Because of the convolution, ωλ depends smoothly on k1, but it could be rapidly
oscillating in t . Whether the bound (5.17) suffices to ensure the �3-dispersivity, the con-
structive interference, and the crossing bound of Sect. 6 remains to be investigated.

In this section we discuss a more modest step, namely the leading part of the main term.
For this purpose we make the following definitions.

Definition 5.5 (Pairing property) Let us consider a Feynman diagram of even order, n even,
where the integration over all momentum δ-functions has been carried out. The Feynman
diagram satisfies the pairing rule if for every even time slice the momenta are paired, i.e., to
each line segment with momentum k and parity σ we can associate another line segment in
the same even time slice with momentum −k and parity −σ .

Definition 5.6 (Leading diagrams) A Feynman diagram is leading, if it satisfies the pairing
property and if it does not contain the factor ̂V (0).

Note that in the 0-th time slice [0, s0] the pairing is induced by the initial state. Thus the
structure of a leading diagram can be obtained by iteration.
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Fig. 2 A leading Feynman diagram with n0 = 4, n = 4, and interaction history (3, 3, 5, 1). Up (down) arrows
correspond to parity +1 (−1). The pairing from the initial state is indicated, where right (left) pointing arrow
stands for the order 〈a∗a〉 (〈aa∗〉)

So let us assume that for the time slice with even label i all line segments are paired. If
there are 2n line segments, they carry momenta σjkj , j = 1, . . . , n, σj = ±1. kj and −kj

are paired. At the end of time slice i three neighboring lines fuse to the line segment with
momentum σ ′k′. If two momenta would be paired, the diagram necessarily contains the
factor ̂V (0). Thus we label neighboring lines by three distinct momenta σjkj , j = 1,2,3.
In the next step there can be two cases which are both displayed in Fig. 2. Case (a) cor-
responds to the 3rd and 4th fusion, while case (b) corresponds to the 1st and 2nd fusion.
In case (a) the line segment σ ′k′ does not participate in the fusion at the end of time slice
i + 1. The fusing triplet has momenta σπ(j)kπ(j), j = 1,2,3, and the momentum of the
fused line segment is σ ′′k′′. By the same argument as above, the π(j)’s must be distinct. To
have pairing in time slice i + 2 requires k′ = k′′, σ ′ = −σ ′′. In turn this is possible only if
{1,2,3} = {π(1),π(2),π(3)}. In case (b) the line segment σ ′k′ participates in the fusion at
the end of time slice i + 1. The fusing momenta are σ ′k′, σπ(1)kπ(1), σπ(2)kπ(2). The fused
momentum is σ ′′k′′. In slice i + 2, σ ′′k′′ must be paired with, say, σπ(3)kπ(3). There will be a
factor ̂V (0) unless all three π(j)’s are distinct. The pairing of σ ′′k′′ and σπ(3)kπ(3) is possible
only if {1,2,3} = {π(1),π(2),π(3)}.

We conclude that for a leading Feynman diagram there must be three paired line segments
in slice i which connect through two fusions to a single paired line segment in slice i + 2,
i = 0,2, . . . , n, n even, compare with Fig. 2. This property allows us to represent a leading
diagram through a contracted diagram which we explain next, see Fig. 3.

In a contracted diagram we draw only the even time slices and each pair as a single
line segment. A line segment thus carries a momentum k. But we still have to distinguish
the relative order within the pair. If in the original Feynman diagram the order from left to
right is −,+, then the line carries the order parity τ = +1, while for the order +,− the
order parity is τ = −1. In the contracted diagram, at the end of each time slice a triplet
of neighboring line segments fuses into a single line segment. In our case, if the leading
Feynman diagram has order 2n, then each contracted diagram has n collisions and there are
(2n + 1)!/2nn! contracted diagrams.
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Fig. 3 Contraction of the diagram from Fig. 2. The order parity, τ , of each contracted line is indicated

To compute the vertex strength for the contracted diagram one has to sum over all Feyn-
man diagrams which fuse 3 pairs at even time slice into the single pair at time slice i + 2.
There are 16 such diagrams. Their sum yields the vertex strength given below in (5.18).

To write down the integral corresponding to a contracted diagram, it is useful to introduce
the “correlation” functions ρ̂n : (Td ×{−1,1})n → C and to define time-dependent collision
operators Cj,n+2(t) with j = 1, . . . , n. We set

(

Cj,n+2(t)ρ̂n+2

)

(k1, τ1, . . . , kn, τn)

= 2
∫

(Td )3
dg2dg3dg4δ(kj + g2 − g3 − g4)

× cos
(

(ω(kj ) + ω(g2) − ω(g3) − ω(g4))t
)

̂V (g2 − g3)
(

̂V (g2 − g3) + θ ̂V (g2 − g4)
)

× (

ρ̂n+2(. . . , g2,−τj , . . . , g3, τj , g4, τj ) + θρ̂n+2(. . . , kj , τj , . . . , g3,1, g4,1)

− ρ̂n+2(. . . , kj , τj , . . . , g2,1, g3,−1) − θρ̂n+2(. . . , kj , τj , . . . , g2,1, g4,1)
)

, (5.18)

which acts on the arguments j,n + 1, n + 2 of ρ̂n+2, and

Cn+2(t) =
n

∑

j=1

Cj,n+2(t). (5.19)

Let

Mλ
n(k1, t)δ(k0 − k1) (5.20)

be the sum over all contracted diagrams at order n with time span t . Then

Mλ
n(k1, λ

−2t)

= λ2n

∫

(R+)n+1
dt

∫

(R+)n
dsδ

(

n+1
∑

j=1

tj +
n

∑

j=1

sj − λ−2t

)

× (

C3(s1) . . . C2n+1(sn)ρ̂2n+1
)

(k1,1)



1152 J. Lukkarinen, H. Spohn

=
∫

0≤∑n
j=1 tj ≤t

dt

∫

0≤∑n
j=1 sj ≤λ−2(t−∑n

j=1 tj )

ds
(

C3(s1) . . . C2n+1(sn)ρ̂2n+1

)

(k1,1). (5.21)

In our particular case the input function is given by

ρ̂n(k1, τ1, . . . , kn, τn) =
n

∏

j=1

W(kj , τj ) (5.22)

with

W(k,1) = W(k), W(k,−1) = 1 + θW(k) = W̃ (k). (5.23)

To prove the limit λ → 0 one needs a first assumption on ω.

Assumption A1 (�3-dispersivity) Let us define

pt(x) =
∫

Td

dke−itω(k)ei2πx·k. (5.24)

Then there exist c > 0, δ > 0 such that

∑

x∈Zd

|pt(x)|3 ≤ c〈t〉−1−δ (5.25)

with the shorthand 〈t〉 = √
1 + t2.

As in [15] one proves the following bound.

Proposition 5.7 Let ‖ρn‖1 ≤ (c0)
n, where ‖ · ‖1 is the �1(Z

d)⊗n norm in position space.
Then there exists a constant c such that

∫ ∞

0
ds sup

k1∈Td

∣

∣

(

C3(s1) . . . C2n+1(sn)ρ̂2n+1

)

(k1,1)
∣

∣ ≤ cnn!. (5.26)

Note that C2n+1(s) has 2n − 1 terms of equal size. The n! in (5.26) thus results from the
product of collision operators.

With this bound one can introduce the collision operator

(Cρ̂3)(k1, τ ) = 2π

∫

(Td )2
dk2dk3δ

(

ω(k1) + ω(k2) − ω(k3) − ω(k1 + k2 − k3)
)

× ̂V (k2 − k3)
(

̂V (k2 − k3) + θ ̂V (k2 − k4)
)(

ρ̂3(k2,−τ, k3, τ, k1 + k2 − k3, τ )

+ θρ̂3(k1, τ, k2,1, k1 + k2 − k3,1) − ρ̂3(k1, τ, k2,1, k3,−1)

− θρ̂3(k1, τ, k2,1, k1 + k2 − k3,1)
)

, (5.27)

where the δ-function is defined through the limit

δ(�) = lim
ε→0

1

π

ε

�2 + ε2
. (5.28)
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As before, from C we construct Cj,n+2, which is C now acting on the variables kj , kn+1, kn+2,
and

Cn+2 =
n

∑

j=1

Cj,n+2. (5.29)

Under the conditions of Proposition 5.7 one concludes that

lim
λ→0

Mλ
n(k1, λ

−2t) = 1

n! t
n(C3 . . . C2n+1ρ̂2n+1)(k1,1) (5.30)

uniformly in k1 and

sup
k1∈Td

|(C3 . . . C2n+1ρ̂2n+1)(k1,1)| ≤ cnn!. (5.31)

Thus the sum over n reads

W(k, t) =
∞

∑

n=0

tn

n! (C3 . . . C2n+1ρ̂2n+1)(k,1). (5.32)

By (5.26) there exists then a t0, such that the sum converges provided

0 ≤ t < t0. (5.33)

If of interest, the time t0 can be computed explicitly. Up to numerical factors of order 1, t0
is proportional to

∑

x∈Zd

|V (x)| and
∫ ∞

0
dt

∑

x∈Zd

|pt(x)|3. (5.34)

Because of the particular initial conditions (5.22), (5.23), the limit in (5.32) can be writ-
ten more concisely. One recognizes W(k, t) as the power series solution of the nonlinear
Boltzmann-Nordheim equation (5.4) with collision operator

C(W)(k1) = 2π

∫

(Td )3
dk2dk3dk4δ(k1 + k2 − k3 − k4)δ(ω1 + ω2 − ω3 − ω4)

× ̂V (k2 − k3)
(

̂V (k2 − k3) + θ ̂V (k2 − k4)
)

× (W̃2W3W4 + θW1W3W4 − W1W2W̃3 − θW1W2W4), (5.35)

which is identical to (5.5).

6 Two-Point Time Correlations in Thermal Equilibrium

6.1 Set-Up

In this and the following section we consider a quantum fluid in thermal equilibrium. We fix
some inverse temperature β > 0 and a chemical potential μ ∈ R such that

ω(k) − μ > 0 (6.1)
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for all k ∈ T
d . 〈·〉β,λ denotes the expectation value with respect to the β-KMS state for the

Hamiltonian H − μN , N the number operator. The two-point function is denoted by

〈â(k)∗â(k′)〉β,λ = δ(k − k′)Wθ
β,λ(k),

〈â(k)â(k′)∗〉β,λ = δ(k − k′)W̃ θ
β,λ(k) = δ(k − k′)

(

1 + θWθ
β,λ(k)

)

.
(6.2)

In the limit λ → 0, the state 〈·〉β,0 is quasifree with

〈â(k)∗â(k′)〉β,0 = δ(k − k′)Wθ
β (k). (6.3)

Since Wθ
β is smooth, the two-point function decays exponentially and by quasifreeness all

fully truncated correlation functions of order greater than two vanish.
In this section we study the effective propagator as the most basic two-point function,

namely

〈â(k)∗â(k′, t)〉β,λ = 〈â(k)∗â(k′)〉β,λCλ(k, t), (6.4)

which defines Cλ(k, t) since both sides of (6.4) are proportional to δ(k − k′). More com-
plicated equilibrium time correlation functions will be discussed in Sect. 7. Because of the
a-term, clearly, Cλ will contain the oscillatory factor e−iω(k)t varying on time scale 1. To first
order in the Duhamel expansion one has

eiω(k1)t 〈â(k0)
∗â(k1, t)〉β,λ

= 〈â(k0)
∗â(k1)〉β,λ − iλ

∫ t

0
ds

∫

(Td )3
dk2dk3dk4δ(k1 + k2 − k3 − k4)̂V (k2 − k3)

× exp[is(ω1 + ω2 − ω3 − ω4)]〈â(k0)
∗â(k2)

∗â(k3)â(k4)〉β,λ + O(λ2). (6.5)

We write

〈â(k0)
∗â(k2)

∗â(k3)â(k4)〉β,λ

= 〈â(k0)
∗â(k4)〉β,λ〈â(k2)

∗â(k3)〉β,λ

+ θ〈â(k0)
∗â(k3)〉β,λ〈â(k2)

∗â(k4)〉β,λ + 〈â(k0)
∗â(k2)

∗â(k3)â(k4)〉Tβ,λ. (6.6)

The truncated part is O(λ) and, when first integrated over momenta as in (6.5), is absolutely
integrable in s. Therefore this contribution will be part of the error term. The first two terms
inserted in (6.5) yield −iλt〈â(k0)

∗â(k1)〉β,λRλ(k1), where

Rλ(k1) =
∫

Td

dk2W
θ
λ (k2)

(

̂V (0) + θ ̂V (k1 − k2)
)

. (6.7)

Our computation suggests that Cλ has a second oscillatory factor of the form

e−iλRλ(k)t (6.8)

varying on the time scale λ−1. The kinetic time scale is order λ−2. Thus it suffices to expand
up to λ as

Rλ(k1) = R0(k1) + λR1(k1) + O(λ2) (6.9)
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with

R0(k1)=
∫

Td

dk2W
θ
β (k2)

(

̂V (0) + θ ̂V (k1 − k2)
)

,

R1(k1)=−β

∫

Td

dk2W
θ
β (k2)W̃

θ
β (k2)

(

̂V (0) + θ ̂V (k1 − k2)
)

×
∫

Td

dk3W
θ
β (k3)

(

̂V (0) + θ ̂V (k1 − k3)
)

.

(6.10)

Potentially the oscillatory term (6.8) could be dangerous because in an expansion in λ it
may mask the kinetic terms. As we will see, fortunately, Rλ can be absorbed by renormaliz-
ing ω to

ωλ = ω + λRλ. (6.11)

The second order term of the Duhamel expansion will not be written out explicitly. It
consists of 18 diagrams, 12 of which combine to

−1

2
λ2t2R0(k)2. (6.12)

The remaining 6 diagrams sum up to

−δ(k − k′)Wθ
β (k)ν(k)λ2t (6.13)

valid for large t . The decay coefficient ν is obtained as

ν(k1) = −
∫ ∞

0
dt

∫

(Td )3
dk2dk3dk4δ(k1 + k2 − k3 − k4) exp[it (ω1 + ω2 − ω3 − ω4)]

× ̂V (k2 − k3)
(

̂V (k2 − k4) + θ ̂V (k2 − k3)
)

× (Wθ
β,3W

θ
β,4 − Wθ

β,2W
θ
β,4 − θWθ

β,2W̃
θ
β,3) (6.14)

with the shorthand Wθ
β,j = Wθ

β (kj ). For the real part of ν one obtains

�ν(k1) = π

∫

(Td )3
dk2dk3dk4δ(k1 + k2 − k3 − k4)δ(ω1 + ω2 − ω3 − ω4)

× 1

2

(

̂V (k2 − k3) + θ ̂V (k2 − k4)
)2

(Wθ
β,1)

−1W̃ θ
β,2W

θ
β,3W

θ
β,4. (6.15)

In particular

�ν(k1) > 0. (6.16)

On the basis of this second order expansion the obvious conjecture is that

Cλ(k, t) ∼= exp
[−(iωλ + λ2ν(k))t

]

(6.17)

for t ≥ 0 and t = O(λ−2), the case t ≤ 0 following from time reversal as

Cλ(k, t)∗ = Cλ(k,−t). (6.18)

Our goal is to prove (6.17). For this purpose we have to assume cluster properties of the
equilibrium state and the decay of certain oscillatory integrals.
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6.2 �1-Clustering of Fully Truncated Correlation Functions

For the KMS state 〈·〉β,λ we consider the fully truncated correlation functions denoted by
〈∏n

j=1 a(xj , σj )〉Tβ,λ. We refer to Appendix A for their definition. They vanish whenever
∑n

j=1 σj �= 0 and, as proved in Appendix A, for n ≥ 4 they do not depend on the operator
ordering except for an overall sign.

Assumption A2 (�1-clustering) Let β > 0 and μ satisfy (6.1). There exists λ0 > 0 and
c0 > 0 independent of n such that for 0 < λ ≤ λ0 and all n ≥ 4 one has the bound

∑

x∈(Zd )n

δx10

∣

∣

∣

∣

∣

〈

n
∏

j=1

a(xj , σj )

〉T

β,λ

∣

∣

∣

∣

∣

≤ λ(c0)
nn!. (6.19)

In addition,
∑

x∈Zd

|〈a(0)∗a(x)〉β,λ − 〈a(0)∗a(x)〉β | ≤ λ2(c0)
2. (6.20)

Ginibre [17] studies �1-clustering for low density quantum gases in the continuum, i.e.,
for position space R

3 and dispersion relation ω(k) = k2. It is rather likely that his analysis
could be carried through also for lattice gases. The L1-bound by Ginibre is based on an
expansion with respect to the fugacity, hence the small coupling regime is not optimally
covered. In particular, the prefactor λ in (6.19) cannot be deduced from [17]. Very recently
Salmhofer [29] establishes Assumption A2 for lattice fermions. In fact there are sign cancel-
lations and in his bound the factor n! is absent. For bosons extra work seems to be needed.

6.3 Oscillatory Integrals

The �3-dispersivity has been stated already in Assumption A1. In addition we need an as-
sumption which controls the constructive interference between two frequencies.

Assumption A3 (Constructive interference) There exists a set M sing ⊂ T
d consisting of a

union of a finite number of closed, one-dimensional, smooth submanifolds, and a constant
C such that for all t ∈ R, k0 ∈ T

d , and σ ∈ {±1},
∣

∣

∣

∫

Td

dke−it (ω(k)+σω(k−k0))
∣

∣

∣ ≤ C〈t〉−1

d(k0,M sing)
, (6.21)

where d(k0,M
sing) is the distance of k0 from M sing.

Remark 6.1 (Dimension) Assumption A3 allows us to cut out a small tube around each
curve. If one would cut out too much, e.g. two-dimensional surfaces, this will show up in
other parts of the proof. For this reason Assumption A3 as stated requires in addition d ≥ 4.
If (6.21) would hold for M sing merely a collection of a finite number of points, then we could
accommodate d ≥ 3.

Next we need a mechanism which allows to distinguish between leading and sublead-
ing diagrams. For the linear Schrödinger equation with a random potential, this mechanism
has been identified in [24]. In the graphical representation developed in this article, it cor-
responds to the crossing of two edges. Our condition is the natural generalization of the
crossing estimate in [24].
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Assumption A4 (Crossing bounds) Define for t0, t1, t2 ∈ R, u1, u2 ∈ T
d , and x ∈ Z

d ,

K(x; t0, t1, t2, u1, u2) =
∫

Td

dkei2πx·ke−i(t0ω(k)+t1ω(k+u1)+t2ω(k+u2)). (6.22)

We assume that there is a measurable function F cr : T
d × R+ → [0,∞] so that constants

0 < γ ≤ 1, c1, c2 for the following bounds can be found.

(i) For any ui ∈ T
d , σi ∈ {±1}, i = 1,2,3, and 0 < ζ ≤ 1, the following bounds are satis-

fied:
∫ ∞

−∞
dt‖pt‖2

3

∫ ∞

−∞
dse−ζ |s|‖K(t, σ1s, σ2s, u1, u2)‖3 ≤ ζ γ−1F cr(u2 − u1; ζ ), (6.23)

∫ ∞

−∞
dt

∫ ∞

−∞
dse−ζ |s|

3
∏

i=1

‖K(t, σis,0, ui,0)‖3 ≤ ζ γ−1F cr(un; ζ ),

for any n ∈ {1,2,3}. (6.24)

(ii) For all 0 < ζ ≤ 1 we have
∫

Td

dkF cr(k; ζ ) ≤ c1〈ln ζ 〉c2 , (6.25)

and if also u, k0 ∈ T
d , α ∈ R, σ ∈ {±1}, and n ∈ {1,2,3}, and we denote k =

(k1, k2, k0 − k1 − k2), then
∫

(Td )2
dk1dk2F

cr(kn + u; ζ )
1

|α − �(k,σ ) + iζ | ≤ c1〈ln ζ 〉1+c2 , (6.26)

where � : (Td)3 × {±1} → R is defined by

�(k,σ ) = ω(k3) − ω(k1) + σ(ω(k2) − ω(k1 + k2 + k3)). (6.27)

Remark 6.2 (Reduction) The reader may wonder whether the stated assumptions can be
proved for a specified class of ω’s. Let us first emphasize that the reduction of the many,
very high-dimensional oscillatory integrals to a few low dimensional oscillatory integrals
involving only ω is already a big step in the right direction. It is also clear that the re-
duction cannot be pushed any further. The �3-dispersivity is needed already to define the
limit equation. Constructive interference occurs always at k0 = 0. Thus some control of the
phenomenon is required. The crossing bound reflects the mechanism by which only a few
diagrams survive in the limit. At present, Assumption A4 is one version which works, but its
optimal form could eventually look differently. In any case, Assumptions A1, A3, and A4
rely on results from a disjoint mathematical discipline. In this sense, the situation is similar
to Assumption A2. Clustering is proved within rigorous statistical mechanics. In our context
it is a necessary input stated in a form which is regarded as obvious by the experts. Assump-
tion A1 can be proved by stationary phase methods and holds generically for dimension
d ≥ 3. We are not aware that Assumption A3 has ever been studied systematically, but hope
that our work might serve as a motivation. Assumption A4 in the somewhat simpler context
of the random Schrödinger equation has been proved for nearest neighbor couplings in [30]
and is investigated more systematically in [31, 32].
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Remark 6.3 (Example) For on-site and nearest neighbor couplings only, i.e., α(x) = 0 for
|x| > 1, α(x) = α1 for |x| = 1, and arbitrary α(0), Assumption A1 is proved in [19] for
d ≥ 3 and Assumptions A3, A4 are proved in [15] for d ≥ 4. The choice of the constants is
γ = 4

7 , c2 = 0, and the function F cr is taken to be

F cr(u; ζ ) = C

d
∏

ν=1

1

| sin(2πuν)| 1
7

(6.28)

with a certain constant C depending only on d and ω.

6.4 Main Result

To formulate our main result it is convenient to integrate the field against a test function
f ∈ �2. Interpreting 〈·, ·〉 as inner product, we set

〈f,a〉 =
∑

x∈Zd

f (x)∗a(x), 〈f,a〉∗ =
∑

x∈Zd

f (x)a(x)∗ (6.29)

and correspondingly for our other conventions as 〈f,a(t)〉 and 〈f,a(σ, t)〉. In particular

〈f̂ , â〉 =
∫

Td

dkf̂ (k)∗â(k) = 〈f,a〉. (6.30)

Note that by Schwarz inequality for operators and stationarity

∣

∣

〈〈f1, a〉∗〈f2, a(t)〉〉
β,λ

∣

∣

2 ≤ 〈〈f1, a〉∗〈f1, a〉〉
β,λ

〈〈f2, a〉∗〈f2, a〉〉
β,λ

=
∫

Td

dkWθ
β,λ(k)|f̂1(k)|2

∫

Td

dkWθ
β,λ(k)|f̂2(k)|2. (6.31)

Hence the quadratic form (f1, f2) �→ 〈〈f1, a〉∗〈f2, a(t)〉〉β,λ is uniformly bounded on �2 ×�2.
Our main result concerns the behavior of this quadratic form on the kinetic time scale. To
be cautious we use the term “Claim”, since even with [15] available, there are a number of
details to be written out.

Claim 6.4 Let 〈·〉β,λ satisfy Assumption A2, let ω satisfy Assumptions A1, A3, and A4, and
let d ≥ 4. Then there exists t0 > 0 such that for 0 ≤ t < t0 one has

lim
λ→0

〈〈f̂2, â〉∗〈exp[−itλ−2ωλ]f̂1, â(λ−2t)〉〉
β,λ

=
∫

Td

dkWθ
β,λ(k)f̂1(k)∗e−ν(k)t f̂2(k) (6.32)

for all f1, f2 ∈ �2(Z
d).

Remark 6.5 (Short kinetic time) The restriction to a short kinetic time, t < t0, has no phys-
ical significance. The decay is expected to hold for arbitrary t0 and most likely for even
longer times. The smallness of t0 merely reflects that in our context it is difficult to properly
bound the error terms. Technically it arises because in the error term one obtains high order
diagrams which are close to the spatially homogeneous case as studied in Sect. 5. One needs
that the leading part of the main term is small. Since the leading diagrams are bounded as
(t/t0)

N , one has to require t < t0.
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6.5 Link to the Weakly Nonlinear Schrödinger Equation

In [15] we prove a corresponding theorem for the nonlinear Schrödinger equation of Sect. 4
in case V (x) = δx0. At the time of writing a preliminary version is completed. With weakly
interacting quantum fluids in focus, [15] is already written in such a way that the operator
ordering, as of relevance in our context, is respected. Thus, with the proper reinterpretation,
most formulas hold also for the quantum evolution. In particular, the analysis of the Feynman
diagrams carries over verbatim. The Duhamel expansion (2.28) is preliminary and one still
needs three modifications to reach the starting point of [15].

– partial time integration. This refers to the time integrations and thus remains valid in the
quantum mechanical context.

– insertion of the cutoff functions �λ
0,�

λ
1 . This refers to the k-integrations and thus remains

valid in the quantum mechanical context.
– removal of fast oscillations. As argued above the dispersion relation ω is renormalized to

ωλ. Thus, as a modification of (2.19), we define

â(k,1, t) = eiωλ(k)t â(k, t), â(k,−1, t) = e−iωλ(k)t â(−k, t)∗. (6.33)

In addition we introduce the pair truncation

P̂
(

â(k1,−1)â(k2, σ )â(k3,1)
)

= â(k1,−1)â(k2, σ )â(k3,1) − (〈â(k1,−1)â(k2, σ )〉β,λâ(k3,1)

+ θ〈â(k1,−1)â(k3,1)〉β,λâ(k2, σ ) + 〈â(k2, σ )â(k3,1)〉β,λâ(k1,−1)
)

, (6.34)

σ = ±1 and omitting the t argument. Then â(k1, σ, t) satisfies the evolution equation

d

dt
â(k1, σ, t) = −iλσ

∫

(Td )3
dk2dk3dk4δ(k1 − k2 − k3 − k4)

× 1

2

(

(1 + σ)̂V (k2 + k3) + (1 − σ)̂V (k3 + k4)
)

× e−it�(k,σ )
{

�λ
1(k2, k3, k4)â(k2,−1, t)â(k3, σ, t)â(k4,1, t)

+ �λ
0(k2, k3, k4)P̂[â(k2,−1, t)â(k3, σ, t)â(k4,1, t)]}, (6.35)

where

�(k,σ ) = −σωλ(k1) − ωλ(k2) + σωλ(k3) + ωλ(k4). (6.36)

Equation (6.35) agrees with the corresponding formula of [15] with the only modification
consisting of a general interaction potential. The case V̂ (k) = V̂ (0), studied in [15], has the
simplification that ωλ(k) = ω(k)+λR0, where R0 is a constant which drops out in frequency
differences.

We are confident that the estimates of the oscillatory integrals proved in [15] still hold
for the case under consideration here. Of course, a simple estimate as

|e−iω(k)t − e−iωλ(k)t | ≤ Cλ|t | (6.37)

uniformly in k is too crude. Rather each oscillating integral has to be estimated with an ωλ

depending weakly on λ. This step remains to be carried out.
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The classical average E in [15] becomes the quantum average 〈·〉β,λ over the KMS state.
With Assumption A2, higher cumulants do not contribute. For the quasifree part one has
either W or W̃ as time t = 0 input. Since both functions are smooth, the estimates from the
commutative case remain valid.

6.6 Error Terms

We adopt the notation from [15]. There are three error terms of the same structure, namely

〈

〈f̂1, â(0)〉∗
∫ t

0
ds〈f̂2, Xn(t, s)[â(s)]〉

〉

β,λ

(6.38)

with X any of G , Z , or A. We use the Schwarz inequality for operators A,B according to
which

|〈A∗B〉β,λ|2 ≤ 〈|A|2〉β,λ〈|B|2〉β,λ (6.39)

with the shorthand A∗A = |A|2. Then

∣

∣

∣

∣

〈

〈f̂1, â(0)〉∗
〈

f̂2,

∫ t

0
dsXn(s, t)[â(s)]

〉〉

β,λ

∣

∣

∣

∣

2

≤
(∫ t

0
ds

∣

∣

〈〈f̂1, â(0)〉〈f̂2, Xn(s, t)[â(s)]〉〉
β,λ

∣

∣

)2

≤ t
〈|〈f̂1, â(0)〉|2〉

β,λ

∫ t

0
ds

〈|〈f̂2, Xn(t, s)[â(s)]〉|2〉
β,λ

. (6.40)

Xn(t, s) is a monomial of order n in the factors a(k, σ, s) which differ by a phase factor
from a(k, s), a(k, s)∗. The latter field operators are invariant for 〈·〉β,λ and, at the expense of
a phase factor, â(s) in (6.40) can be replaced by â(0). Thus, at given cutoff N , the two-point
function of (6.32) is reduced to a main term and an error term, which both involve only the
free time evolution and are monomials of the time 0 fields â averaged with respect to the
β-KMS state 〈·〉β,λ.

6.7 Convergence of the Leading Part of the Main Term

We refer to Sect. 5 for the general structure. For the case under consideration the Feynman
diagrams are constrained. In (6.32) the oscillating term is combined with 〈f̂2, â〉∗. The Feyn-
man diagram has one line segment [0, t] with parity −1, which is constrained not to fuse at
all. In the time slice [t − sn, t] there is only one further line segment. Thus n0 = 2. A leading
diagram is still defined by the pairing property for even time slices and the absence of the
factor ̂V (0). The line corresponding to 〈f̂2, â〉∗ has momentum k1. The collision operator
acting on k2, . . . , kn+2 is defined as in (5.18). Because of the constraint the collision operator
acting on k1 reads

(

C−
1,n+2(t)ρ̂n+2

)

(k1, τ1, . . . , kn, τn)

= 2
∫

(Td )3
dg2dg3dg4δ(k1 + g2 − g3 − g4)

× eit (ω(k1)+ω(g2)−ω(g3)−ω(g4))
̂V (k2 − k3)

(

̂V (k2 − k3) + θ ̂V (k2 − k4)
)
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× (

θρ̂n+2(k1, τ1, . . . , g3,1, g4,1) − ρ̂n+1(k1, τ1, . . . , g2,1, g3,−1)

− θρ̂n+2(k1, τ1, . . . , g2,1, g4,1)
)

. (6.41)

The initial conditions are

ρ̂n(k1, τ1, . . . , kn, τn) =
n

∏

j=1

Wβ(kj , τj ). (6.42)

We set

C−
n+2(t) = C−

1,n+2(t) +
n

∑

j=2

Cj,n+2(t). (6.43)

Let us define Mλ
n(t) as the sum of all leading Feynman diagrams at order n. With the

above notation it is given by

Mλ
n(t) = λ2n

∫

(R+)n+1
dt

∫

(R+)n
dsδ

(

n+1
∑

j=1

tj +
n

∑

j=1

sj − t

)

∫

Td

dk1f̂1(k1)
∗f̂2(k1)

× (

C−
3 (s1) . . . C−

2n+1(sn)ρ̂2n+1
)

(k1,1). (6.44)

Proposition 5.7 remains valid. Thus one can pass to the limit as

lim
λ→0

Mλ
n(λ

−2t) = 1

n! t
n

∫

Td

dk1f̂1(k1)
∗f̂2(k1)(C−

3 . . . C−
2n+1ρ̂2n+1)(k1,1). (6.45)

Let ρ̂3 be given by (6.42). Then

(

C1,3(s)ρ̂3

)

(k1, τ1) = d

ds

∫

(Td )3
dk2dk3dk4δ(k1 + k2 − k3 − k4)

× (sin�s)�−1(eβ� − 1)
(

̂V (k2 − k3) + θ ̂V (k2 − k4)
)2

× Wβ(k1, τ1)Wβ(k2, τ1)Wβ(k3,−τ1)Wβ(k4,−τ1), (6.46)

with � = ω1 + ω2 − ω3 − ω4. Therefore

∫ ∞

0
ds

(

C1,3(s)ρ̂3
)

(k1, τ1) = 0. (6.47)

Returning to (6.45) we conclude that when acting with C−
2j+1, where j = 1, . . . , n, only its

first summand, i.e., C−
1,2j+1, contributes. Hence, there exists t0 such that for 0 ≤ t ≤ t0 one

has

lim
λ→0

∞
∑

n=0

Mλ
n(λ

−2t) =
∞

∑

n=0

tn

n! (−1)n

∫

Td

dkf̂1(k)∗f̂2(k)Wθ
β (k)ν(k)n. (6.48)

Remark 6.6 (Radius of convergence) The integral in (6.46) decays at least as s−δ . Therefore
the error in (6.47) is order λ2δ . The leading diagrams at order n have a single term which
yields the non-zero limit in (6.48), while the remaining (n! − 1) terms are of order λ2δ .
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Therefore one can cut the series at order N with λ2δN ! = 1. Since the series of contribut-
ing terms has an infinite radius of convergence, the restriction to bounded t0 can be lifted
and (6.48) holds in fact for all t . On the other hand the error term can be controlled only for
|t | ≤ t0 and the extra effort will not improve Theorem 6.3.

7 Time Correlations for the Number Density

Physically of great interest are the density current and energy current time correlations. They
differ in two respects from the correlation function studied in the previous section: they are
four-point functions and, more importantly, involve a spatial summation. Slightly formal,
these correlation functions are particular cases of the number density time correlations in
equilibrium, i.e., of 〈â(k, t)∗â(k, t)â(k′,0)∗â(k′,0)〉β,λ.

Let η : Z
d → C such that η(x)∗ = η(−x) and η has bounded support. We define the

energy-like, resp. number-like, observable

Hη =
∑

x,y∈Zd

η(x − y)a(x)∗a(y) (7.1)

and represent it by a sum of local terms as

Hη =
∑

w∈Zd

Hη
w,

Hη
w = 1

2

∑

y∈Zd

(

a(w)∗η(w − y)a(y) + a(y)∗η(y − w)a(w)
)

.
(7.2)

For Hη = Hhar one has η̂(k) = ω(k), for the energy current η̂(k) = (∇kω(k))ω(k), and,
correspondingly, η̂(k) = 1, η̂(k) = ∇kω(k) for number and number current.

As before 〈·〉β,λ is the β-KMS state for H −μN at infinite volume with μ satisfying (6.1)
and we set 〈·〉β,0 = 〈·〉β . It is also convenient to introduce the Kubo inner product defined
through

〈〈A,B〉〉β,λ = β−1
∫ β

0
dβ ′(〈A∗e−β ′H Beβ ′H 〉β,λ − 〈A∗〉β,λ〈B〉β,λ

)

. (7.3)

The fluctuations of Hη in a large box 
 are given by

ξ
η


 = |
|−1/2
∑

w∈


(

Hη
w − 〈Hη

w〉β,λ

)

(7.4)

and the quantity of interest is the time-displaced covariance of (7.4), which reads

lim

↑Zd

〈〈ξη


, ξ
η


(t)〉〉β,λ =
∑

w∈Zd

〈〈Hη
w,H

η

0 (t)〉〉β,λ = C
η

λ(t). (7.5)

In particular, at t = 0,

lim
λ→0

lim

↑Zd

〈〈ξη


, ξ
η


〉〉β,λ =
∑

w∈Zd

〈〈Hη
w,H

η

0 〉〉β =
∫

Td

dk|η̂(k)|2Wθ
β (k)W̃ θ

β (k). (7.6)

Note that in the limit λ → 0 the Kubo and standard inner product coincide for the observ-
ables under consideration.
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As before the kinetic limit provides information on C
η

λ(λ−2t) for small λ. There is a
simple formal argument how to guess this correlation by building on the results from Sect. 5.
Let 〈·〉β,λ(ε) be the β-KMS state for H − μN + (ε/β)Hη. Then

C
η

λ(t) = ∂

∂ε
〈Hη

0 (t)〉β,λ(ε)
∣

∣

ε=0
. (7.7)

We now perform first the limit λ → 0 and then the limit ε → 0. For time t = 0 one has

lim
λ→0

〈â(k)∗â(k′)〉β,λ(ε) = δ(k − k′)Wε(k), (7.8)

where

Wε(k) = (e[β(ω(k)−μ)+εη̂(k)] − θ)−1, (7.9)

which is well-defined for ε sufficiently small. Now, by Sect. 5,

lim
λ→0

〈â(k, λ−2t)∗â(k′, λ−2t)〉β,λ(ε) = δ(k − k′)Wε(k, t), (7.10)

and Wε(k, t) solves (5.4) with initial condition Wε(k). It follows that

lim
λ→0

〈Hη

0 (λ−2t)〉β,λ(ε) =
∫

Td

dkη̂(k)Wε(k, t). (7.11)

We linearize the collision operator as

C(Wθ
β + εf ) = εAf + O(ε2). (7.12)

It is convenient to introduce the multiplication operator Uβ through

(Uβf )(k) = (

Wθ
β (k)W̃ θ

β (k)
)1/2

f (k), (7.13)

and to define

Lf = −AU 2
βf. (7.14)

Expanding (7.11),

∂

∂ε

∫

Td

dkη̂(k)Wε(k, t)
∣

∣

ε=0
= 〈η̂, eAtU 2

β η̂〉, (7.15)

where 〈·, ·〉 denotes now the inner product in L2(Td , dk). Using the definition of L, (7.15)
can be written in the more symmetric form as

〈η̂, eAtU 2
β η̂〉 = 〈Uβη̂, exp[−U−1

β LU−1
β t]Uβη̂〉. (7.16)

From the linearization one obtains

(Lf )(k1) = π

∫

(Td )3
dk2dk3dk4δ(k1 + k2 − k3 − k4)δ(ω1 + ω2 − ω3 − ω4)

× |̂V (k2 − k3) + θ ̂V (k2 − k4)|2
× Wθ

β,1W
θ
β,2W̃

θ
β,3W̃

θ
β,4(f1 + f2 − f3 − f4). (7.17)
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The quadratic form associated to L reads then

〈f,Lf 〉 = π

4

∫

(Td )4
dk1dk2dk3dk4δ(k1 + k2 − k3 − k4)δ(ω1 + ω2 − ω3 − ω4)

× |̂V (k2 − k3) + θ ̂V (k2 − k4)|2
× Wθ

β,1W
θ
β,2W̃

θ
β,3W̃

θ
β,4(f1 + f2 − f3 − f4)

2. (7.18)

Therefore L = L∗ and L ≥ 0. Clearly L1 = 0 and Lω = 0. Thus the zero subspace is at least
two-fold degenerate. If the H-theorem holds, see Appendix B, then the 0 eigenvalue of L is
exactly two-fold degenerate. In brackets, we note that momentum conservation is destroyed
by the underlying lattice. More precisely, if one sets f (k) = k mod 1, then Lf �= 0, since
the umklapp k1 + k2 − k3 − k4 = n, n integer vector and n �= 0, is permitted according to the
momentum δ-function.

Allowing for the interchange of limits we arrive at

Conjecture 7.1 Under suitable conditions on ω it holds

lim
λ→0

C
η

λ(λ−2t) = 〈Uβη̂, exp[−U−1
β LU−1

β |t |]Uβη̂〉. (7.19)

Duhamel Expansion We want to explore whether, at least in principle, the Duhamel ex-
pansion of Sect. 2 could work. The starting point is (2.28) for n0 = 2. This results in

H
η

0 (t) = H
η

0,main(t) + H
η

0,error(t). (7.20)

The main term is discussed first.
We insert the main term in the definition of C

η

λ(t). Then the time t = 0 input for the
Feynman diagrams is of the generic form

∑

w∈Zd

〈〈

Hη
w,

n
∏

j=1

â(kj , σj )

〉〉

β,λ

= ∂

∂ε

〈

n
∏

j=1

â(kj , σj )

〉

β,λ

(ε)

∣

∣

∣

ε=0
. (7.21)

Therefore we have to require a slightly modified �1-clustering as

Assumption A5 (Strengthened �1-clustering) Let β > 0 and μ satisfy (6.1). There exists
λ0 > 0 and c0 > 0 independent of n such that for 0 < λ ≤ λ0 and all n ≥ 4 one has the bound

∑

x∈(Zd )n

δx10

∣

∣

∣

∣

∣

∂

∂ε

〈

n
∏

j=1

a(xj , σj )

〉

β,λ

(ε)

∣

∣

∣

ε=0

∣

∣

∣

∣

∣

≤ λ(c0)
nn!. (7.22)

In addition,
∑

x∈Zd

∣

∣

∣

∂

∂ε
〈a(x)∗a(0)〉β,λ(ε)

∣

∣

ε=0
− (U 2

β η̂)̌(x)

∣

∣

∣ ≤ λ2(c0)
2. (7.23)

Under Assumption A5, the input function for the Feynman diagrams has the same regu-
larity as used in Sect. 6. We conclude that together with Assumptions A1, A3, and A4, the
Duhamel expansion converges term by term to the conjectured limit (7.19).
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For the error term one has symbolically

Hη
w,error(t) =

∫ t

0
dsF η

N,w(t − s)[â(s)]. (7.24)

For the Kubo inner product we use Schwarz inequality as in (6.39) to conclude

(

∑

w∈Zd

〈〈Hη
w,H

η

0,error(t)〉〉β,λ

)2

≤ t

(

∑

w∈Zd

〈〈Hη

0 ,Hη
w〉〉β,λ

)

×
∫ t

0
ds

∑

w∈Zd

〈〈F η

N,0(t − s)[â(s)], F η

N,w(t − s)[â(s)]〉〉β,λ. (7.25)

The first factor is bounded. In the second factor we use stationary to arrive at

∫ t

0
ds

∑

w∈Zd

〈〈FN,0(s)[â], FN,w(s)[â]〉〉β,λ. (7.26)

Proceeding as before, one would like to take the
∑

w in the exponential to modify the state
〈·〉β,λ. But this would be a high order polynomial, hence difficult to control. One may view
(7.26) also as Feynman diagrams with singular initial conditions resulting from the one
δ-function because of the

∑

w . This would require to redo the oscillatory integrals. At
present it is not clear whether such an approach could work even in principle.
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Appendix A: Truncated Correlation Functions

We follow Bratelli and Robinson [18, pp. 39 and 43].
Let 〈·〉 be an even state on the CCR, resp. CAR, algebra. The moments are assumed to

exist and odd moments vanish. We use aj as shorthand for 〈fj , aj (σj )〉. Then the moments
are

〈

n
∏

j=1

aj

〉

(A.1)

and the fully truncated moments are denoted by

〈

n
∏

j=1

aj

〉T

. (A.2)
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To define them, let J denote an index set and F a function from the non-empty ordered
subsets of J to the complex numbers. The truncation FT of F is now given recursively by

F(I) =
∑

PI

ε(PI )
∏

J∈PI

FT (J ), (A.3)

where the sum is over all partitions PI of I into ordered even subsets, PI = {J1, . . . , Jn}
and ε(PI ) = 1 for bosons and ε(PI ) = ±1 is according to whether the permutation I �→
(J1, . . . , Jn) is even or odd. In our case F are the moments and FT their full truncation.

Theorem A.1 (Truncated correlations) Let n be even, n ≥ 4, and let π be a permutation of
I = (1, . . . , n). Then

〈

n
∏

j=1

aj

〉T

= ε(π)

〈

n
∏

j=1

aπ(j)

〉T

, (A.4)

where ε(π) = 1 for bosons and for fermions ε(π) = signπ , the sign of the permutation π .

Proof Let I = {1, . . . , n} and α = {m,m + 1} ⊂ I . We set

F(I) = 〈a1 . . . an〉, ˜F(I) = 〈a1 . . . am+1am . . . an〉. (A.5)

It holds

F(I) =
∑

α∈J⊂I

ε(J, I � J )FT (J )F (I � J ), (A.6)

where ε(J, I � J ) = 1 for bosons and ε(J, I � J ) = ±1 for fermions according to whether
I �→ (J, I � J ) is an even or odd permutation of I . Since amam+1 − θam+1am = c1, c ∈ C,
one has

cF (I � α) = F(I) − θ ˜F(I) =
∑

α∈J⊂I

ε(J, I � J )
(

FT (J ) − θ ˜FT (J )
)

F(I � J )

= (

FT (α) − θ ˜FT (α)
)

F(I � α)

+
∑

α∈J⊂I,J �=α

ε(J, I � J )
(

FT (J ) − θ ˜FT (J )
)

F(I � J ). (A.7)

Since FT (α) − θ ˜FT (α) = c, we conclude

0 =
∑

α∈J⊂I,J �=α

ε(J, I � J )
(

FT (J ) − θ ˜FT (J )
)

F(I � J ). (A.8)

For |I | = 4, the only summand is J = I and FT (I) = θ ˜FT (I) since F(∅) = 1. By iterat-
ing (A.8), one concludes the validity of (A.4). �

Appendix B: Some Properties of the Spatially Homogeneous Boltzmann-Nordheim
Equation

The purpose of this appendix is to provide a rather compressed list of the basic properties
of the spatially homogeneous Boltzmann-Nordheim equation and to point at the relevant
literature. It will be convenient to discuss fermions and bosons separately.
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B.1 Fermions

The Boltzmann-Nordheim equation reads, see (5.4), (5.5),

∂

∂t
W(k, t) = C

(

W(t)
)

(k), (B.1)

C(W)(k1) = π

∫

(Td )3
dk2dk3dk4δ(k1 + k2 − k3 − k4)δ(ω1 + ω2 − ω3 − ω4)

× |̂V (k2 − k3) − ̂V (k2 − k4)|2(W̃1W̃2W3W4 − W1W2W̃3W̃4), (B.2)

W̃ = 1−W . It has to be solved for initial data W such that 0 ≤ W(k) ≤ 1. If there would be a
first time t such that W(k0, t) = 0, then C(W(t))(k0) ≥ 0, and correspondingly W(k1, t) = 1
implies that C(W(t))(k1) ≤ 0. Hence the constraint 0 ≤ W ≤ 1 is preserved in time. Note
that C(W) = 0 in case ̂V (k) = ̂V (0).

At least formally, total number and energy are conserved,
∫

Td

dk1 C(W)(k1) = 0,

∫

Td

dk1ω(k1)C(W)(k1) = 0. (B.3)

According to the Fermi statistics, the entropy per volume of a quasifree state is given by

S(W) = −
∫

Td

dk
(

W(k) logW(k) + W̃ (k) log W̃ (k)
)

. (B.4)

The entropy changes in time as

d

dt
S
(

W(t)
) = σ

(

W(t)
)

(B.5)

with the entropy production

σ(W) = π

∫

(Td )4
dk1dk2dk3dk4δ(k1 + k2 − k3 − k4)δ(ω1 + ω2 − ω3 − ω4)

× |̂V (k2 − k3) − ̂V (k2 − k4)|2F(W̃1W̃2W3W4,W1W2W̃3W̃4) (B.6)

and F(x, y) = (x − y) log(x/y). Hence

σ ≥ 0, (B.7)

which is the H-theorem. σ = 0 if and only if

W1W2

W̃1W̃2

= W3W4

W̃3W̃4

(B.8)

on the collision set Dc = {(k1, k2, k3, k4) ∈ R
12|k1 + k2 = k3 + k4,ω1 + ω2 = ω3 + ω4}. If

one introduces

φ = log(W/W̃), (B.9)

then φ is a collisional invariant in the sense that

φ1 + φ2 = φ3 + φ4 on Dc. (B.10)
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Under some regularity on ω and for
∫

Td dk|φ(k)| < ∞, it is proved in [33] that the only
solutions to (B.10) are

φ(k) = a + bω(k). (B.11)

If W is stationary and if
∫

Td dk| log(W/(1 − W))| < ∞, then W is necessarily of the
form

W−
β,μ(k) = (

eβ(ω(k)−μ) + 1
)−1

(B.12)

for some β,μ ∈ R. In the limit β → ∞, one obtains

W−
∞,μ(k) = 1(ω(k) ≤ μ) (B.13)

and for β → −∞
W−

−∞,μ(k) = 1(ω(k) ≥ μ). (B.14)

Although the corresponding collision invariant is not integrable, one checks directly that
W−∞,μ and W−

−∞,μ are stationary solutions of (B.1), (B.2). Presumably our list comprises all
stationary solutions of the Boltzmann-Nordheim equation.

Let us introduce the density, ρ, and energy, e, of W through

ρ(W) =
∫

Td

dkW(k), e(W) =
∫

Td

dkω(k)W(k). (B.15)

If one picks some W , then there is a unique pair β,μ such that ρ(W) = ρ(W−
β,μ), e(W) =

e(W−
β,μ), provided one also admits the values β = ±∞. Because of the conservation laws,

this strongly suggests that for the solution with this W as initial datum it holds

lim
t→∞W(t) = W−

β,μ. (B.16)

On the mathematical side, besides the study of collision invariants, the main focus so
far is the existence and uniqueness of solutions. We refer to the review [34]. These authors
consider the momentum space R

3 and dispersion ω(k) = k2, see Remark 5.3. To be concise
we quote one result from Dobeault [35].

Theorem B.1 Let d ≥ 2 and ω(k) = k2. Let V be radial with
∫

Rd dk|k||̂V (k)|2 < ∞. For
the initial datum, W , we assume W ∈ L∞(Rd) and 0 ≤ W ≤ 1. Then the integrated version
of the Boltzmann-Nordheim equation,

W(t) = W +
∫ t

0
dsC(W(s)), (B.17)

has a unique solution in C([0,∞),L∞(Rd)), which satisfies 0 ≤ W(t) ≤ 1 for all t ≥ 0. If
ρ(W) < ∞, e(W) < ∞, and S(W) < ∞, then it holds, for all t ≥ 0,

∫

Rd

dkW(k, t)=ρ(W),

∫

Rd

dkkW(k, t) =
∫

Rd

dkkW(k),

∫

Rd

dkk2W(k, t)=e(W), S(W(t)) = S(W) +
∫ t

0
dsσ

(

W(s)
)

.

(B.18)
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Apparently, the case of interest in our context has never been investigated. One difficulty
results from the constraint due to the energy δ-function. On the other hand, since T

d is
compact, finite number, energy, and entropy holds automatically. Under Assumption A2 we
expect Theorem B.1 still to be valid.

B.2 Bosons

The Boltzmann-Nordheim equation reads, see (5.4), (5.5),

∂

∂t
W(k, t) = C(W(t))(k), (B.19)

C(W)(k) = π

∫

(Td )3
dk2dk3dk4δ(k1 + k2 − k3 − k4)δ(ω1 + ω2 − ω3 − ω4)

× |̂V (k2 − k3) + ̂V (k2 − k4)|2(W̃1W̃2W3W4 − W1W2W̃3W̃4), (B.20)

W̃ = 1 + W . It has to be solved with initial data W such that W ≥ 0,
∫

dkW(k) < ∞.
Positivity is preserved in the course of time and number and energy conservation holds as in
(B.3).

According to the Bose statistics, the entropy per volume of a quasifree state is given by

S(W) = −
∫

Td

dk
(

W(k) logW(k) − W̃ (k) log W̃ (k)
)

. (B.21)

Then (B.5) to (B.11) still hold, provided W̃ = 1+W and in (B.6) |̂V (k2 −k3)− ̂V (k2 −k4)|2
is substituted by |̂V (k2 − k3) + ̂V (k2 − k4)|2.

If W is stationary and
∫

Td dk| logW/(1 + W)| < ∞, then W is necessarily of the form

W+
β,μ(k) = (

eβ(ω(k)−μ) − 1
)−1

, (B.22)

where, in order to have W+
β,μ ≥ 0, one is restricted to

β > 0, ωmin ≥ μ and β < 0, μ ≥ ωmax. (B.23)

The density and energy of a state W is still given by (B.15). Clearly, the range of this
map is D = {(ρ,e)|0 < ρ < ∞, ρωmin < e < ρωmax}. However for d ≥ 3 and under our
assumptions on ω, the map (β,μ) → (ρ(W+

β,μ),e(W+
β,μ)) has a range Dnor which is a proper

subset of D. Therefore, for an initial W with (ρ(W),e(W)) ∈ D \ Dnor the solution of the
Boltzmann-Nordheim equation has no limiting stationary state. Physically the excess mass
condenses to a superfluid component, which is reflected by a δ-peak at k = 0 in the Wigner
function. Based on self-similar solutions it is argued that the condensate is nucleated at some
finite time. We refer to the review [36], see also [37, 38].

On the mathematical side, the cubic nonlinearity of the Boltzmann-Nordheim equation
poses severe difficulties. Only the case of momentum space R

3, dispersion ω(k) = k2/2
has been studied in detail and even then only for isotropic solutions which makes W(k, t) to
depend on |k| only. We use ε as energy variable, ε = k2/2, and set W(k, t) = f (ε, t). In case
̂V (k) = ̂V (0) = 1/(2(2π)3) the Boltzmann-Nordheim equation for the energy distribution
reads

∂

∂t
f (ε1, t) = Cr

(

f (t)
)

(ε1) (B.24)



1170 J. Lukkarinen, H. Spohn

with the collision operator

Cr(f )(ε1) =
∫

{ε3+ε4≥ε1}
dε3dε4

1√
ε1

min
{√

ε1,
√

ε2,
√

ε3,
√

ε4

}

× (f̃1f̃2f3f4 − f1f2f̃3f̃4), (B.25)

see [37]. Here ε2 = ε3 + ε4 − ε1, fj = f (εj ), j = 1, . . . ,4, f̃ = 1 + f . Lu [39] consid-
ers (B.24) in the weak form

d

dt

∫ ∞

0
ϕ(ε)f (ε, t)

√
εdε =

∫ ∞

0
ϕ(ε)Cr

(

f (t)
)

(ε)
√

εdε (B.26)

with test functions ϕ ∈ C2
b(R+) and proves that (B.26) remains meaningful even if

f (ε, t)
√

εdε is a positive measure on R+. We denote such a measure by f (dε, t). The
possible roughness of f (dε, t) is balanced by rewriting the right hand side of (B.26) in
such a way that the collisional difference ϕ(ε1) + ϕ(ε2) − ϕ(ε3) − ϕ(ε4) appears. For t = 0
we assume finite mass and energy, i.e.,

∫ ∞
0 f (dε) < ∞ and

∫ ∞
0 εf (dε) < ∞. Then (B.26)

has a solution which conserves mass and energy. The stationary measures of (B.26) are
necessarily of the form

fβ,μ(dε) = (eβ(ε−μ) − 1)−1√εdε + nconδ(ε)dε (B.27)

with either μ ≤ 0 and condensate density ncon = 0 or μ = 0 and ncon > 0. The critical
line dividing the normal fluid from the condensate is given by e(ρ) = (ρ/ρ0)

−5/3e0 with
ρ0 = ∫ ∞

0 dε
√

ε(eβε − 1)−1, e0 = ∫ ∞
0 dε

√
εε(eβε − 1)−1.

For the particular case (B.24) one has some rigorous information on the concentration.
Let the initial data be given by a density, i.e., f (dε) = fac(ε)

√
εdε, such that

ρ = ρ(f ) =
∫ ∞

0
fac(ε)

√
εdε < ∞, e = e(f ) =

∫ ∞

0
εfac(ε)

√
εdε < ∞. (B.28)

In general, the solution to (B.26) is then a measure, f (dε, t), which can be uniquely decom-
posed into an absolutely continuous and a singular part,

f (dε, t) = fac(ε, t)
√

εdε + fs(dε, t). (B.29)

Now let fβ,μ be the equilibrium distribution corresponding to ρ(f ), e(f ), where μ = 0 in
case ncon > 0. Lu [40] proves that, for ρ ≤ ρc,

lim
t→∞

∫ ∞

0
fs(dε, t) = 0, lim

t→∞

∫ ∞

0
|fac(ε, t) − fβ,μ(ε)|√εdε = 0. (B.30)

On the other hand for ρ > ρc one has

lim
t→∞

∫ ∞

0
|fac(ε, t) − fβ,0(ε)|ε√εdε = 0 (B.31)

and

lim
t→∞

∫

{ε|0≤ε4≤r(t)}
f (dε, t) = ρ − ρc, (B.32)
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where r(t) is the integral in (B.31). Thus for large times the solution develops a δ-peak at
ε = 0 with weight ncon.

Whether such a concentration appears after some finite time or only asymptotically, as
t → ∞, is left unanswered by the theorem.
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